This study aims to develop a machine learning model using the CatBoost algorithm to predict obesity based on demographic, lifestyle, and health-related features and compare its performance with other machine learning algorithms. The dataset used in this study, containing information on 2,111 individuals from Mexico, Peru, and Colombia, was used to train and evaluate the CatBoost model. The dataset included gender, age, height, weight, eating habits, physical activity levels, and family history of obesity. The model's performance was assessed using accuracy, precision, recall, and F1-score and compared to logistic regression, K-nearest neighbors (KNN), random forest, and naive Bayes algorithms. Feature importance analysis was conducted to identify the most influential factors in predicting obesity levels. The results indicate that the CatBoost model achieved the highest accuracy at 95.98%, surpassing other models. Furthermore, the CatBoost model demonstrated superior precision (96.08%), recall (95.98%), and F1-score (96.00%). The confusion matrix revealed that the model accurately predicted the majority of instances in each obesity level category. Feature importance analysis identified weight, height, and gender as the most influential factors in predicting obesity levels, followed by dietary habits, physical activity, and family history of overweight. The model's high accuracy, precision, recall, and F1-score and ability to handle categorical variables effectively make it a valuable tool for obesity risk assessment and classification. The insights gained from the feature importance analysis can guide the development of targeted obesity prevention and management strategies, focusing on modifiable risk factors such as diet and physical activity. While further validation on diverse populations is necessary, the CatBoost model's results demonstrate its potential to support clinical decision-making and inform public health initiatives in the fight against the global obesity epidemic.