Knowledge about subsurface geological characteristics and a geothermic genetic model plays an essential role in geothermal exploration and resource assessment. To solve the problem in the Shunping area along eastern Taihang Mountain, geothermal geological conditions were analyzed by geophysical, geochemical, and geological methods, such as magnetotelluric, gas geochemistry, and structural analysis. The geothermic genetic model was developed by analyzing the characteristics of the heat source, water source, migration channel, reservoir, and cap rock of the geothermal geological conditions. Favorable deep thermal conduction conditions and sufficient atmospheric precipitation in the study area provide an original heat source and water supply for geothermal formation. The faults and unconformities of different scales have become effective channels for the migration of underground hot water. The thermal reservoir formed by marine carbonate rocks with karst fissure development provides suitable space for the storage of underground hot water. Although the Cenozoic strata have good thermal insulation and water insulation function, the thermal insulation and water insulation effect is not ideal because of the shallow coverage in the Shunping area and the damage by tectonic action, which affected thermal insulation and water insulation to some extent, restricting the practical preservation of underground heat energy in the Shunping area. The bedrock geothermal resource in the Shunping area is original from the combined action of multiple indexes of source, transport, reservoir, and cap. The geothermal geologic conditions of source and reservoir in the Shunping area are very similar to those in the Xiongan new area, and have obvious advantages in hydrodynamic conditions. Although limited by the cap’s effectiveness, the geothermal resources in the Shunping area can provide some clean energy support for local production and life, thereby satisfying economic development conditions and encouraging further geological exploration.