The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of specific immunity. Brief naturalistic stressors (such as exams) tended to suppress cellular immunity while preserving humoral immunity. Chronic stressors were associated with suppression of both cellular and humoral measures. Effects of event sequences varied according to the kind of event (trauma vs. loss). Subjective reports of stress generally did not associate with immune change. In some cases, physical vulnerability as a function of age or disease also increased vulnerability to immune change during stressors.Since the dawn of time, organisms have been subject to evolutionary pressure from the environment. The ability to respond to environmental threats or stressors such as predation or natural disaster enhanced survival and therefore reproductive capacity, and physiological responses that supported such responses could be selected for. In mammals, these responses include changes that increase the delivery of oxygen and glucose to the heart and the large skeletal muscles. The result is physiological support for adaptive behaviors such as "fight or flight." Immune responses to stressful situations may be part of these adaptive responses because, in addition to the risk inherent in the situation (e.g., a predator), fighting and fleeing carries the risk of injury and subsequent entry of infectious agents into the bloodstream or skin. Any wound in the skin is likely to contain pathogens that could multiply and cause infection (Williams & Leaper, 1998). Stress-induced changes in the immune system that could accelerate wound repair and help prevent infections from taking hold would therefore be adaptive and selected along with other physiological changes that increased evolutionary fitness.Modern humans rarely encounter many of the stimuli that commonly evoked fight-or-flight responses for their ancestors, such as predation or inclement weather without protection. However, human physiological response continues to reflect the demands of earlier environments. Threats that do not require a physical response (e.g., academic exams) may therefore have physical consequences, including changes in the immune system. Indeed, over the past 30 years, more than 300 studies have been done on stress and immunity in humans, and together they have shown that psychological challenges are capable of modifying various features of the immune response. In this article we attempt to consolidate empirical knowledge about psychological stress and the human immune system through meta-analysis. Both the construct of stress and the human immune system are complex, and both could consume bookCorrespondence concerning this article should be addressed to Suzanne C. Segerstrom, Department of Ps...