2012
DOI: 10.14358/pers.78.1.75
|View full text |Cite
|
Sign up to set email alerts
|

A New Method for Segmenting Individual Trees from the Lidar Point Cloud

Abstract: Light Detection and Ranging (lidar) has been widely applied to characterize the 3-dimensional (3D) structure of forests as it can generate 3D point data with high spatial resolution and accuracy. Individual tree segmentations, usually derived from the canopy height model, are used to derive individual tree structural attributes such as tree height, crown diameter, canopy-based height, and others. In this study, we develop a new algorithm to segment individual trees from the small footprint discrete return airb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

12
489
0
5

Year Published

2015
2015
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 567 publications
(506 citation statements)
references
References 39 publications
12
489
0
5
Order By: Relevance
“…Če se osredotočimo na posamezna drevesa, ki jih bomo obravnavali tudi v naši raziskavi, lahko z laserskimi podatki identificiramo vrhove in določimo višine posameznih dreves. Vrhove posameznih dreves v gozdnem sestoju lahko ločimo med seboj z različnimi algoritmi, ki iščejo lokalne maksimume v surovih podatkih ali na digitalnih modelih krošenj (Reitberger et al, 2008;Kim et al, 2009;Li et al, 2012;Mongus in Žalik, 2015). Če k preučevanju geometrijskih odvisnosti med točkami dodamo še preučevanje intenzitete odbitih laserskih točk, lahko raziskave razširimo na preučevanje zmožnosti določitve posameznih drevesih vrst v laserskih podatkih (Holmgren in Persson, 2004;Moffiet et al, 2005;Kim et al, 2009;Ørka et al, 2009;Korpela et al, 2010).…”
Section: Uvodunclassified
“…Če se osredotočimo na posamezna drevesa, ki jih bomo obravnavali tudi v naši raziskavi, lahko z laserskimi podatki identificiramo vrhove in določimo višine posameznih dreves. Vrhove posameznih dreves v gozdnem sestoju lahko ločimo med seboj z različnimi algoritmi, ki iščejo lokalne maksimume v surovih podatkih ali na digitalnih modelih krošenj (Reitberger et al, 2008;Kim et al, 2009;Li et al, 2012;Mongus in Žalik, 2015). Če k preučevanju geometrijskih odvisnosti med točkami dodamo še preučevanje intenzitete odbitih laserskih točk, lahko raziskave razširimo na preučevanje zmožnosti določitve posameznih drevesih vrst v laserskih podatkih (Holmgren in Persson, 2004;Moffiet et al, 2005;Kim et al, 2009;Ørka et al, 2009;Korpela et al, 2010).…”
Section: Uvodunclassified
“…The ability to delineate individual trees from a Lidar point cloud has been proven for heterogeneous and complex forests such as oak savanna (Chen et al 2006;Chen et al 2007) and mixed-conifer stands (Li et al 2012). Delineating the individual trees is done by segmenting the Lidar-derived canopy height modelthe raster image interpolated from Lidar points depicting the top of the vegetation canopy (e.g., Chen et al 2006) -by delineating the trees directly from the point cloud (Li et al 2012) or by a combination of these methods (Jakubowski, Li et al 2013).…”
Section: Lidar Use In California Forestsmentioning
confidence: 99%
“…Delineating the individual trees is done by segmenting the Lidar-derived canopy height modelthe raster image interpolated from Lidar points depicting the top of the vegetation canopy (e.g., Chen et al 2006) -by delineating the trees directly from the point cloud (Li et al 2012) or by a combination of these methods (Jakubowski, Li et al 2013). After accurate segmentation, relationships can be derived between Lidarand field-measured structural attributes such as tree height, crown diameter and canopy base height, which are directly measured, and basal area, diameter at breast height, wood volume, biomass and species type, which are derived by correlations (Chen et al 2006;Chen et al 2007).…”
Section: Lidar Use In California Forestsmentioning
confidence: 99%
“…For example, spatial error can be introduced during the interpolation process from the point cloud to the gridded height model (Guo et al, 2010), which can decrease the accuracy of tree segmentations and relevant measurements (Li et al, 2012). To increase the accuracy of detection, Persson et al applied a Gaussian function to elevation model (Persson et al 2002), but the use of smoothing filter cause to estimate the tree height incorrectly (Tiede et al, 2005).…”
Section: Introductionmentioning
confidence: 99%
“…But it's hard to define this threshold, especially in dense forests. Inappropriate threshold may cause to under-and/or over-segmentation errors (Li et al, 2012). Another problem is that points must participate in the segmentation and classification processes one by one, that in itself rises the computation time.…”
Section: Introductionmentioning
confidence: 99%