2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013
DOI: 10.1109/embc.2013.6610770
|View full text |Cite
|
Sign up to set email alerts
|

A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces

Abstract: Abstract-This paper presents the first attempt to quantify the individual performance of the subject and of the computer agent on a closed loop Reinforcement Learning Brain Machine Interface (RLBMI). The distinctive feature of the RLBMI architecture is the co-adaptation of two systems (a BMI decoder in agent and a BMI user in environment). In this work, an agent implemented using Q-learning via kernel temporal difference (KTD)(λ) decodes the neural states of a monkey and transforms them into action directions … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2015
2015

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…Using the proposed methodology introduced in [36], we can observe how the decoder effectively learns a good state to action mapping, and how neural states affect the prediction performance. Figure 15 shows how each participant (the agent and the user) influences the overall performance in both successful and missed trials, and how the agent adapts the environment.…”
Section: Experimental Results On Neural Decodingmentioning
confidence: 99%
“…Using the proposed methodology introduced in [36], we can observe how the decoder effectively learns a good state to action mapping, and how neural states affect the prediction performance. Figure 15 shows how each participant (the agent and the user) influences the overall performance in both successful and missed trials, and how the agent adapts the environment.…”
Section: Experimental Results On Neural Decodingmentioning
confidence: 99%