2021
DOI: 10.1002/mma.7373
|View full text |Cite
|
Sign up to set email alerts
|

A new method of solving equations of elasticity in inhomogeneous quasicrystals by means of symmetric hyperbolic systems

Abstract: Hooke's law and dynamic equations of motion in inhomogeneous 3‐D quaicrystals (QCs) were reduced to a symmetric hyperbolic system of the first‐order partial differential equations. This symmetric hyperbolic system describes a new mathematical model of wave propagation in inhomogeneous 3‐D QCs. Applying the theory and methods of symmetric hyperbolic systems, we have proved that this model satisfies the Hadamard's correctness requirements: solvability, uniqueness, and stability with respect to perturbation of da… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?