Background
There is increasing interest in evaluating home-range overlap (or, otherwise, segregation) between bird species, and between or within bird populations, to inform spatial planning. So far, studies of home-range overlap typically make use of comparisons between pairs of individuals, populations or species, and return a matrix of pairwise overlaps (e.g., percent overlaps). However, when the number of individuals, populations or species to be compared is elevated, an overlarge overlap matrix is difficult to interpret from an ecological viewpoint.
Methods
We propose here a new, conceptually simple and computationally efficient index (general overlap index; GOI) for the ready computation within GIS of home range overlap of an arbitrarily large number (i.e., n ≥ 2) of individuals, populations or species. Whatever the number of home ranges to be compared, GOI always returns a single score between 0 and 100. As a case study, we applied our index to 24,074 GPS points of 10 Lesser Kestrels (Falco naumanni) in order to estimate within-colony and between-colony overlaps in two neighboring colonies in Southern Italy.
Results
Within-colony overlap was elevated for both colonies (96.41% at Cassano delle Murge, n = 5 individuals; 81.38% at Santeramo in Colle, n = 5 individuals), while between-colony overlap was low (19.12%; n = 2 colonies) and, after a randomization procedure, more spatially-segregated than expected by chance.
Conclusions
Modern biotelemetry offers huge amounts of data describing the space use of animal species. The use of intuitive and straightforward indices, like GOI, can be useful to promptly extract ecological information from such an amount of data (e.g. detecting change in space use over successive years, evaluating the reliability of various home-range estimators).