The Mengshan granitoid complex is located in the central part of Jiangnan Orogen and belongs to the western part of Jiangxi Province, where several phases of granitic magmatism record the crustal evolution of the late-Indosinian. However, its petrogenesis remains uncertain, largely due to controversies over its origin, evolutionary process and tectonic setting during intrusion. In this study, the lithological features and contact relationships observed in the systematic field geological investigations indicate that the late magmatic phases of the Mengshan granitoid complex are mainly composed of medium–fine-grained biotite monzogranite and fine-grained monzogranite, both of which developed primary fine-grained muscovite. Petrological, petrographic, geochemical and zircon U-Pb-Hf isotopic studies were further carried out on these rocks. Zircon U-Pb isotopic analyses suggest that the medium–fine-grained biotite monzogranite mainly formed at 220.7 ± 1.0 Ma to 218.0 ± 0.8 Ma, and that the fine-grained monzogranite formed at 211.5 ± 2.9 Ma to 212.9 ± 1.0 Ma. Whole-rock geochemical analysis results suggest that these rocks are rich in Cs, Rb, and U, and deficient in Ba, Sr, and Ti, and that they have properties characteristic of rocks with high silica, low P content and high K calc-alkali. Mineralogical and geochemical analysis results suggest that they are S-type granites. The εHf(t) values of the early-stage medium–fine-grained biotite monzogranite and late-stage fine-grained monzogranite range from –4.7 to 0.3 and from –3.2 to 0.7, respectively. Geochemical and isotopic data suggest that these granitoids were derived from the partial melting of Proterozoic continent basement rocks, and that minor mantle materials were involved during their generation. The presence of the early Mesozoic Mengshan granitoid complex reflects a reduplicated far-field converge effect of the collision of the North China and South China blocks and the subduction of the Palaeo-Pacific plate into the South China block. The thickening of the Earth’s crust facilitated crustal delamination, underplating of mantle-derived magma, and crustal heating, triggering intense partial melting of the lithosphere and magma enrichment.