This paper concerns the problem of designing an EID-based robust output-feedback modified repetitive-control system (ROFMRCS) that provides satisfactory aperiodic-disturbance rejection performance for a class of plants with time-varying structured uncertainties. An equivalent-input-disturbance (EID) estimator is added to the ROFMRCS that estimates the influences of all types of disturbances and compensates them. A continuous-discrete two-dimensional model is built to describe the EID-based ROFMRCS that accurately presents the features of repetitive control, thereby enabling the control and learning actions to be preferentially adjusted. A robust stability condition for the closed-loop system is given in terms of a linear matrix inequality. It yields the parameters of the repetitive controller, the output-feedback controller, and the EID-estimator. Finally, a numerical example demonstrates the validity of the method.