Evolutionary algorithms can be used to solve interesting problems for aeronautical and astronautical applications, and it is a must to review the fundamentals of the most common evolutionary algorithms being used for those applications. Genetic algorithms, particle swarm optimization, firefly algorithm, ant colony optimization, artificial bee colony optimization, and the cuckoo search algorithm are presented and discussed with an emphasis on astronautical applications. In summary, the genetic algorithm and its variants can be used for a large parameter space but is more efficient in global optimization using a smaller chromosome size such that the number of parameters being optimized simultaneously is less than 1000. It is found that PID controller parameters, nonlinear parameter identification, and trajectory optimization are applications ripe for the genetic algorithm. Ant colony optimization and artificial bee colony optimization are optimization routines more suited for combinatorics, such as with trajectory optimization, path planning, scheduling, and spacecraft load bearing. Particle swarm optimization, firefly algorithm, and cuckoo search algorithms are best suited for large parameter spaces due to the decrease in computation need and function calls when compared to the genetic algorithm family of optimizers. Key areas of investigation for these social evolution algorithms are in spacecraft trajectory planning and in parameter identification.