2022
DOI: 10.4271/2022-01-0492
|View full text |Cite
|
Sign up to set email alerts
|

A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms

Abstract: <div class="section abstract"><div class="htmlview paragraph">The fuel spray process is of utmost importance to internal combustion engine design as it dominates engine performance and emissions characteristics. While designers rely on computational fluid dynamics (CFD) modeling for understanding of the air-fuel mixing process, there are recognized shortcomings in current CFD spray predictions, particularly under super-critical or flash-boiling conditions. In contrast, time-resolved optical spray e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 34 publications
0
0
0
Order By: Relevance