In the context of a sustainable long-term human presence on the Moon, solutions for habitat radiation and thermal protection with regolith are investigated. Regolith compression is studied to choose the optimal density-thickness combination in terms of radiation shielding and thermal insulation. The applied strategy is to protect the whole habitat from the hazards of galactic cosmic rays and design a dedicated shelter area for protection during solar particle events, which eventually may be a lava tube. Simulations using NASA’s OLTARIS tool show that the effective dose equivalent decreases significantly when a multilayer structure mainly constituted of regolith and other available materials is used instead of pure regolith. The computerised anatomical female model is considered here because future missions will be mixed crews, and, generally, more sex-specific data are required in the field of radiation protection and human spaceflight. This study shows that if reasonably achievable radioprotection conditions are met, mixed crews can stay safely on the lunar surface. Compressed regolith demonstrates a significant efficiency in thermal insulation, requiring little energy management to keep a comfortable temperature inside the habitat. For a more complete picture of the outpost, the radiation protection of lunar rovers and extravehicular mobility units is considered.