Abstract. During the rise to the maximum phase of solar cycle 23, several periods of extreme solar wind conditions have occurred. During such an example on May 4, 1998, the solar wind monitors observed a period of strong southward interplanetary magnetic field (IMF) accompanied by a solar wind dynamic pressure that was 30 times higher than average. During this period the Polar spacecraft crossed the magnetopause and bow shock and experienced its first solar wind encounter. This case provides a rare opportunity to study the magnetopause, low-latitude boundary layer, magnetosheath, and bow shock and to test our ability to model the dynamic behavior of these boundary regions under extreme and highly variable solar wind conditions. In this study we use the gas dynamic convected field model to predict the time-dependent magnetic field and plasma properties upstream from the magnetopause and the location of the Polar spacecraft relative to the magnetopause and bow shock during the event. To test the accuracy of the prediction, model magnetic field characteristics are compared to the fields observed along the satellite track by the magnetometer on Polar. The predicted model plasma characteristics (density, velocity, and temperature) are compared to moments derived from TIDE observations, extrapolated to account for the higher energy portion of the magnetosheath distributions.