2022
DOI: 10.3390/axioms11010033
|View full text |Cite
|
Sign up to set email alerts
|

A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs

Abstract: Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2025
2025
2025
2025

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 13 publications
0
0
0
Order By: Relevance