A number of international and national programs classify substances that are persistent (P or very P), bioaccumulative (B or very B), toxic (T), or have the potential for long-range transport. The oldest of these programs is the Stockholm Convention on Persistent Organic Pollutants. More recent programs address persistent, bioaccumulative, and toxic (PBT) properties for chemicals in general (Registration, Evaluation, Authorisation and Restriction of Chemicals, REACH; EC 253/2011) and plant protection products (PPPs) (EC 1107(EC /2009). However, these programs used different criteria for categorization. We critically assessed the criteria and process used in the categorization of PPPs and noted that EC1107/2009, in contrast to the Stockholm Convention or REACH, offers no process for carrying out a further, more refined assessment of those pesticides that are identified as having PBT properties. Thus, in contrast to REACH, few basic screening criteria are used for final-step management decisions. Guidance on the selection of data is not provided, and the criteria used are unclear. For example, no guidance is given as to how the half-lives in soil, water, and sediment should be derived and the term 'half-life' is not clearly defined. Large amounts of useful data on environmental and toxicological properties are available for PPPs but most of this is not used in the categorization, for example, photolysis in water, water-sediment, and on soil, important environmental degradation processes particularly relevant to pesticides. The criteria for bioaccumulation and toxicity appear to be focused only on aquatic ecosystems and do not address the terrestrial compartment which is particularly relevant for pesticides and potentially relevant for PBT considerations. The categorization process under EC 1107/2009 could be made more efficient and reduce false negatives and positives if a formal weight of evidence approach was applied to multiple lines of evidence. This paper presents these ideas and how they can be incorporated into the framework for categorization to better classify plant protection products in terms of persistence, bioaccumulation, and toxicity.