Cross-efficiency evaluation is an effective and widely used method for ranking decision making units (DMUs) in data envelopment analysis (DEA). Gap minimization criterion is introduced in aggressive and benevolent cross-efficiency methods to avoid possible extreme efficiency from peer-evaluation and to get equitable results. On the basis of this criterion, a weighted cross-efficiency method with similarity distance that, respectively, considers the aggressive and the benevolent formulations is proposed to determine cross-efficiency. The weights of the cross-evaluation determined by this method are positively influenced by self-evaluation and thus are propitious to resolving conflict. Numerical demonstration reveals the feasibility of the proposed method.