2015 Chinese Automation Congress (CAC) 2015
DOI: 10.1109/cac.2015.7382842
|View full text |Cite
|
Sign up to set email alerts
|

A new remaining useful life prediction approach based on Wiener process with an adaptive drift

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 16 publications
0
2
0
Order By: Relevance
“…The parameters estimation at the current time is assumed to be equivalent to the posterior estimations of the last time 6,9,30 . The state equation and observation equation of the first stage based on state‐space models 28 are described as μ1,kgoodbreak=μ1,k1+w1ykgoodbreak=yk1goodbreak+μ1,k1normalΔtkgoodbreak+σ1normalΔBk+ε1\begin{equation}\left\{ { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {{\mu _{1,k}} = {\mu _{1,k - 1}} + {w_1}}\\[5pt] {{y_k} = {y_{k - 1}} + {\mu _{1,k - 1}}\Delta {t_k} + {\sigma _1}\Delta {B_k} + {\varepsilon _1}} \end{array} } \right.\end{equation}where w1N(0,Q1)${w_1}{\rm{\sim }}N(0,{Q_1})$, normalΔtk=tktk1$\Delta {t_k} = {t_k} - {t_{k - 1}}$, normalΔBkN(0,Δtk)$\Delta {B_k}{\rm{\sim }}N(0,\Delta {t_k})$.…”
Section: Model Parameter Estimationmentioning
confidence: 99%
See 1 more Smart Citation
“…The parameters estimation at the current time is assumed to be equivalent to the posterior estimations of the last time 6,9,30 . The state equation and observation equation of the first stage based on state‐space models 28 are described as μ1,kgoodbreak=μ1,k1+w1ykgoodbreak=yk1goodbreak+μ1,k1normalΔtkgoodbreak+σ1normalΔBk+ε1\begin{equation}\left\{ { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {{\mu _{1,k}} = {\mu _{1,k - 1}} + {w_1}}\\[5pt] {{y_k} = {y_{k - 1}} + {\mu _{1,k - 1}}\Delta {t_k} + {\sigma _1}\Delta {B_k} + {\varepsilon _1}} \end{array} } \right.\end{equation}where w1N(0,Q1)${w_1}{\rm{\sim }}N(0,{Q_1})$, normalΔtk=tktk1$\Delta {t_k} = {t_k} - {t_{k - 1}}$, normalΔBkN(0,Δtk)$\Delta {B_k}{\rm{\sim }}N(0,\Delta {t_k})$.…”
Section: Model Parameter Estimationmentioning
confidence: 99%
“…The parameters estimation at the current time is assumed to be equivalent to the posterior estimations of the last time. 6,9,30 The state equation and observation equation of the first stage based on state-space models 28 are described as…”
Section: Model Parameter Estimationmentioning
confidence: 99%