We extend the uniform mixture model of Gao et al. ) proposed that to characterize the probability distributions of multimodal and irregular data observed in engineering, a uniform mixture model can be used. This model is a weighted combination of multiple uniform distribution components. This case is of empirical interest since, in many instances, the distribution of the error term in a linear regression model cannot be assumed unimodal. Bayesian methods of inference organized around Markov chain Monte Carlo are proposed. In a Monte Carlo experiment, significant efficiency gains are found in comparison to least squares justifying the use of the uniform mixture model.