Despite its common usage in estimating the linear regression model parameters, the ordinary least squares estimator often suffers a breakdown when two or more predictor variables are strongly correlated. This study proposes an alternative estimator to the OLS and other existing ridge-type estimators to tackle the problem of correlated regressors (multicollinearity). The properties of the proposed estimator were derived, and six forms of biasing parameter k (generalized, median, mid-range, arithmetic, harmonic and geometric means) were used in the proposed estimator to compare its performance with five other existing estimators through a simulation study. The proposed estimator dominated existing estimators when the mid-range, arithmetic mean, and median versions of k were used. However, the proposed estimator did not perform well when the generalized, harmonic, and geometricmean versions were used.