The Current practice of air-fuel ratio control relies on empirical models and traditional PID controllers, which require extensive calibration to maintain the post-catalyst air-fuel ratio close to stoichiometry. In contrast, this work utilizes a physics-based Three-Way Catalyst (TWC) model to develop a model predictive control (MPC) strategy for air-fuel ratio control based on internal TWC oxygen storage dynamics. In this paper, parameters of the physics-based temperature and oxygen storage models of the TWC are identified using vehicle test data for a catalyst aged to 150,000 miles. A linearized oxygen storage model is then developed from the identified nonlinear model, which is shown via simulation to follow the nonlinear model with minimal error during nominal operation. This motivates the development of a Linear MPC (LMPC) framework using the linearized TWC oxygen storage model, reducing the requisite computational effort relative to a nonlinear MPC strategy. In this work, the LMPC utilizing a linearized physics-based TWC model is proven suitable for tracking a desired oxygen storage level by controlling the commanded engine air-fuel ratio, which is also a novel contribution. The offline simulation results show successful tracking performance of the developed LMPC framework.