2018
DOI: 10.1007/s12524-018-0808-9
|View full text |Cite
|
Sign up to set email alerts
|

A New Semi-supervised Classification Method Based on Mixture Model Clustering for Classification of Multispectral Data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Finite mixture models in a grid structure based on the number of components are obtained from multivariate Gaussian mixture distributions. Among the mixture models obtained according to the determined cases, the best models are selected based on information criteria [22].…”
Section: Introductionmentioning
confidence: 99%
“…Finite mixture models in a grid structure based on the number of components are obtained from multivariate Gaussian mixture distributions. Among the mixture models obtained according to the determined cases, the best models are selected based on information criteria [22].…”
Section: Introductionmentioning
confidence: 99%
“…Ancak bu stratejide kümelerin sayısının üst sınırının belirlenmesi için güçlü bir yöntem geliştirilememiştir. Verilerdeki heterojenliğe dayalı küme sayısının belirlenmesi için EM algoritmaları ile k-ortalamalar algoritmaları kullanılarak tek değişkenli normal karma dağılımlar kullanılabilir [9]. Veri için en iyi kümelenme modeli Akaike Bilgi Kriteri (AIC) [10] ve Bayesçi Bilgi Kriteri (BIC) [11] gibi iyi bilinen bilgi kriterleri kullanılarak optimizasyon ile belirlenir.…”
Section: Introductionunclassified