The thioether functionalized aminosilanes Me2Si(NH‐C6H4‐2‐SR)2 (R = Ph, Me) were lithiated with nBuLi and subsequently reacted with AgCl in the presence of PMe3 or with [AuCl(PMe3)]. In the case of Me2Si(NH‐C6H4‐2‐SPh)2 the dinuclear complexes [M2{Me2Si(NC6H4‐2‐SPh)2}(PMe3)2] (M = Ag; Au) were isolated. The analogous reactions starting from Me2Si(NH‐C6H4‐SMe)2 afforded the dinuclear gold complex [Au2{Me2Si(NC6H4‐2‐SMe)2}(PMe3)2] and the tetranuclear silver complex [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2]. In the dinuclear compounds of the type [M2{Me2Si(NC6H4‐2‐SR)2}(PMe3)2], each of the silylamide N atoms is connected to a M(PMe3) group to give a nearly linear N–M–P arrangement with Ag–N and Au–N bonds in the range of 212.0(4)–213.3(4) pm and 205.3(3)–208.1(9) pm, respectively. [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2] consists of a central Si2N4Ag2 ring with linearly coordinated Ag atoms (Ag‐N: 223.1(4)–222.1(4) pm) and two peripheral Ag(PMe3) units, which are connected to the amido N atoms in a chelating mode. The relatively short transannular Ag···Ag separation (277.6(1) pm) within the Si2N4Ag2 ring hints for argentophilic interactions. The peripheral Ag atoms are three coordinated with Ag–N distances of 233.9(4)–242.8(4) pm.