The integration of photodynamic therapy (PDT) with photothermal therapy (PTT) offers improved efficacy in cancer phototherapy. Herein, a PDT photosensitizer (IR-808) with cancer-targeting ability and near-infrared (NIR) sensitivity was chemically conjugated to both polyethylene glycol (PEG)- and branched polyethylenimine (BPEI)-functionalized nanographene oxide (NGO). Because the optimal laser wavelength (808 nm) of NGO for PTT is consistent with that of IR-808 for PDT, the IR-808-conjugated NGO sheets (NGO-808, 20-50 nm) generated both large amounts of reactive oxygen species (ROS) and local hyperthermia as a result of 808 nm laser irradiation. With PEG- and BPEI-modified NGO as the carrier, the tumor cellular uptake of NGO-808 exhibited higher efficacy than that of strongly hydrophobic free IR-808. Through evaluation with both human and mouse cancer cells, NGO-808 was demonstrated to provide significantly enhanced PDT and PTT effects compared to individual PDT using IR-808 or PTT using NGO. Furthermore, NGO-808 preferentially accumulated in cancer cells as mediated by organic-anion transporting polypeptides (OATPs) overexpressed in many cancer cells, providing the potential for highly specific cancer phototherapy. Using the targeting ability of NGO-808, in vivo NIR fluorescence imaging enabled tumors and their margins to be clearly visualized at 48 h after intravenous injection, providing a theranostic platform for imaging-guided cancer phototherapy. Remarkably, after a single injection of NGO-808 and 808 nm laser irradiation for 5 min, the tumors in two tumor xenograft models were ablated completely, and no tumor recurrence was observed. After treatment with NGO-808, no obvious toxicity was detected in comparison to control groups. Thus, high-performance cancer phototherapy with minimal side effects was afforded from synergistic PDT/PTT treatment and cancer-targeted accumulation of NGO-808.