Purpose
This paper aims to present the design and implementation of a new general-purpose single-phase buck-type inverter.
Design/methodology/approach
The operation of the proposed inverter is based on the general-purpose buck converter. The proposed buck-type inverter topology is designed with reduced numbers of passive and active elements to minimize design cost and complexity. Also, an efficient hybrid control technique based on the proportional‐integral‐derivative (PID) supported by open-loop control signal is offered for the control of the proposed inverter. The proposed hybrid control method improves the performance of the PID controller during the change of inverter operation parameters. A close to single-phase sine wave output voltage with low total harmonic distortion (THD) can be produced by the proposed inverter in a wide range of voltage and frequency lower than the inverter input voltage value.
Findings
Simulation and experimental test studies are applied to the proposed inverter. The experimental laboratory setup is built for 0–50 Hz, 0–100 Vp, 0.5 kW. Both the simulation and the experimental test results show that the single-phase inverter can produce close to sine wave output voltage with THD level under 5% in a wide range of frequency for various operating conditions and for different loads.
Originality/value
In this paper, a new topology and a new hybrid control technique that are patented by the corresponding author are implemented for a single-phase buck-type inverter through a scientific project. The operating results of the study reveal the efficient operating capability with a simple topology structure.