This article presents results of experimental investigations of the lap blind riveted joint. The main goal of the work is determination of destructive load of the blind riveted joints. The blind rivets were originally used in the aircraft structures where access to both sides of the riveted structure is impossible. Blind rivets are now commonly used in many branches of industry because of their low cost. Moreover, the riveting process is uncomplicated. There are many publications about analysis of strength of solid rivets in the research literature. However, the strength analysis of the blind rivets was rarely undertaken. There is the research gap in the analysis of both the strength and the load capacity of blind riveted joints. The influence of selected geometrical parameters of the joint on the stress distribution and the destructive force was not widely described in literature. The first part of the work presents a review of standards and publications related to stress and strength analysis of blind riveted joints. The next part of the study describes experimental investigations of joints. The examined specimens were made out of AW 2017 aluminum alloy, cut from 1[mm] thick sheet. Investigated blind rivets were made out of aluminum alloy. The lap joint with one rivet and the single row five-rivet joint were investigated. Moreover, the different size of hole chamfer were considered. The experimental tests were performed with the use of Zwick-Roell tension machine. The main results of experimental investigations are ultimate shear load diagrams. The influence of both the hole chamfer and the number of rivets on destructive force and shear diagrams of blind riveted joints were in detail analysed. After shear tests, the fractured rivets were magnified in order to explain the failure phenomenon of blind rivets. In the future research works the obtained results will be used in strength analysis of the blind riveted joints using the finite element method.