<p style='text-indent:20px;'>In this article, we present a new approach to construct smoothing approximations for piecewise smooth functions. This approach proposes to formulate any piecewise smooth function as the expectation of a random variable. Based on this formulation, we show that smoothing all elements of a defined space of piecewise smooth functions is equivalent to smooth a single probability distribution. Furthermore, we propose to use the Boltzmann distribution as a smoothing approximation for this probability distribution. Moreover, we present the theoretical results, error estimates, and some numerical examples for this new smoothing method in both one-dimensional and multiple-dimensional cases.</p>