We propose a new method for blind source separation of cyclostationary sources, whose cyclic frequencies are unknown and may share one or more common cyclic frequencies. The suggested method exploits the cyclic correlation function of observation signals to compose a set of matrices which has a particular algebraic structure. The aforesaid matrices are automatically selected by proposing two new criteria. Then, they are jointly diagonalized so as to estimate the mixing matrix and retrieve the source signals as a consequence. The nonunitary joint diagonalization (NU-JD) is ensured by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which is the most commonly used update strategy for implementing a quasi-Newton technique. The efficiency of the method is illustrated by numerical simulations in digital communications context, which show good performances comparing to other state-of-the-art methods.