2014
DOI: 10.3997/1873-0604.2014027
|View full text |Cite
|
Sign up to set email alerts
|

A new stable downward continuation of airborne magnetic data based on Wavelet deconvolution

Abstract: This paper describes an efficient wavelet‐based deconvolution method for the downward continuation of airborne potential (magnetic and gravity) field data. We formulate the downward continuation process as a linear ill‐posed deconvolution problem. To obtain a reasonable downward continued field data, it is stabilized in a wavelet domain by minimizing the L1‐norm of the coefficients subject to the constraint that is the agreement of the upward response with the original observed data up to a white Gaussian nois… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 40 publications
0
1
0
1
Order By: Relevance
“…Fedi and Florio, 2002;Trompat et al, 2003;Cooper, 2004) and during the last years there can be followed something like a "boom" in this scientific area (e.g. Ma et al, 2013;Zeng et al, 2013;Zhang H. et al, 2013;Abedi et al, 2014;Zeng et al, 2014;Zeng et al, 2015;Zhang Y. et al, 2016, Zhou et al, 2018Florio and Fedi, 2018;Zhang et al, 2018).…”
Section: Tikhonov's Regularization Approach In Stable Downward Continmentioning
confidence: 99%
“…Fedi and Florio, 2002;Trompat et al, 2003;Cooper, 2004) and during the last years there can be followed something like a "boom" in this scientific area (e.g. Ma et al, 2013;Zeng et al, 2013;Zhang H. et al, 2013;Abedi et al, 2014;Zeng et al, 2014;Zeng et al, 2015;Zhang Y. et al, 2016, Zhou et al, 2018Florio and Fedi, 2018;Zhang et al, 2018).…”
Section: Tikhonov's Regularization Approach In Stable Downward Continmentioning
confidence: 99%
“…Em outras palavras, o parâmetro adequado corresponde ao modelo que minimiza a média dos resíduos preditivos do dado observado. A curva VCG (Figura 6) é construída plotando a função de desajuste dos dados normalizada pelo traço da matriz para um conjunto de teste de parâmetros de regularização na escala log-log (Abedi et al, 2014). Segundo Stickel (2010), este método é eficiente no processamento de dados irregularmente espaçados.…”
Section: Derivadas Regularizadasunclassified