The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-017-0336-y) contains supplementary material, which is available to authorized users.