2017
DOI: 10.1007/s10596-017-9697-1
|View full text |Cite
|
Sign up to set email alerts
|

A new streamline model for near-well flow validated with radial flow experiments

Abstract: Streamline simulation is a powerful tool that can be used for full field forecasting, history matching, flood optimization, and displacement visualization. This paper presents the development and the application of a new semi-analytical streamline simulation method in the nearwellbore region in polar/cylindrical coordinate systems. The main objective of this paper is to study the effects of the permeability heterogeneity and well completion details in the near-wellbore region. These effects dictate the streaml… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 42 publications
0
1
0
Order By: Relevance
“…In the scope of this paper, we consider a single‐phase flow problem in a porous medium subject to the following assumptions: fluid and porous medium are incompressible, gravity and capillary effects are negligible, and streamlines are traced in source‐/sink‐free grid blocks. For well grid blocks that contain point source/sink, a different numerical approach (Tang et al, ; Wang et al, ) or local refinement is required to obtain sufficient accurate results since velocity field varies significantly in the near‐well bore region. The fluid flow in the porous medium obeys Darcy's law, that is, boldu=KμP, where u is Darcy velocity, K is full tensor permeability, μ is viscosity, and P is pressure.…”
Section: Principles Of Streamline Tracing Methods Based On Pressure Amentioning
confidence: 99%
“…In the scope of this paper, we consider a single‐phase flow problem in a porous medium subject to the following assumptions: fluid and porous medium are incompressible, gravity and capillary effects are negligible, and streamlines are traced in source‐/sink‐free grid blocks. For well grid blocks that contain point source/sink, a different numerical approach (Tang et al, ; Wang et al, ) or local refinement is required to obtain sufficient accurate results since velocity field varies significantly in the near‐well bore region. The fluid flow in the porous medium obeys Darcy's law, that is, boldu=KμP, where u is Darcy velocity, K is full tensor permeability, μ is viscosity, and P is pressure.…”
Section: Principles Of Streamline Tracing Methods Based On Pressure Amentioning
confidence: 99%