A simulation model was built to numerically investigate the electron emission property of a new surface-conduction electron emitter (SCE) with a raised emitter structure. The model calculated the electric field distribution, the electron emission characteristics, and the electron trajectories, which were useful for analyzing and understanding the microscopic mechanism of the electron emissions of the new SCE structure. It was found that the new structure increased the probability of electrons being collected by the anode which led to an increase of the anode current despite of the decrease of field emission current. This study benefits the advanced design of emitter structures in nanoscale technology for new types of electron sources.