2021
DOI: 10.1186/s13662-021-03485-8
|View full text |Cite
|
Sign up to set email alerts
|

A new structure of an integral operator associated with trigonometric Dunkl settings

Abstract: In this paper, we discuss a generalization to the Cherednik–Opdam integral operator to an abstract space of Boehmians. We introduce sets of Boehmians and establish delta sequences and certain class of convolution products. Then we prove that the extended Cherednik–Opdam integral operator is linear, bijective and continuous with respect to the convergence of the generalized spaces of Boehmians. Moreover, we derive embeddings and discuss properties of the generalized theory. Moreover, we obtain an inversion form… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?