The design of liquid-propellant engines (LPEs) has several challenges in setting the performance parameters. Accordingly, optimizing the design of a thrust chamber is of considerable importance that has been considered in several research projects. Previous research has focused on multidisciplinary design optimization (MDO). However, despite these efforts, the main issues remain. The present paper proposes a multi-objective multidisciplinary design optimization based on an efficient adaptive surrogate model of the thrust chamber to address these issues. The proposed method introduces a practical multidisciplinary optimization method based on an adaptive surrogate model that uses the moving least squares methodology, CCM, sensitivity analysis, and the elite multi-objective genetic algorithm (NSGAII). Due to the high importance of specific impulse and thrust-to-weight ratio, these two functions were used as target functions and in the NSGAII framework, the Pareto frontier was drawn for them. The proposed method is applied to a thrust-chamber engine test case. The results show that the target performance of the engine is improved, the specific impulse value is increased by 3.4 s, and the thrust-to-weight ratio is increased by 4%. These values represent significant advances in LPE engine design. The results obtained in this study indicate the potential of the proposed method in solving large-scale thrust-chamber design optimization problems.