Pressure communication between adjacent wells is frequently encountered in multi-stage hydraulic fractured shale gas reservoirs. An interference test is one of the most popular methods for testing the connectivity of a reservoir. Currently, there is no practical analysis model of an interference test for wells connected by large fractures. A one-dimensional equation of flow in porous media is established, and an analytical solution under the constant production rate is obtained using a similarity transformation. Based on this solution, the extremum equation of the interference test for wells connected by a large fracture is derived. The type-curve of pressure and the pressure derivative of an interference test of wells connected by a large fracture are plotted, and verified against interference test data. The extremum equation of wells connected by a large fracture differs from that for homogeneous reservoirs by a factor 2. Considering the difference of the flowing distance, it can be concluded that the pressure conductivity coefficient computed by the extremum equation of homogeneous reservoirs is accurate in the order of magnitude. On the double logarithmic type-curve, as time increases, the curves of pressure and the pressure derivative tend to be parallel straight lines with a slope of 0.5. When the crossflow of the reservoir matrix to the large fracture cannot be ignored, the slope of the parallel straight lines is 0.25. They are different from the type-curves of homogeneous and double porosity reservoirs. Therefore, the pressure derivative curve is proposed to diagnose the connection form of wells.