We have analyzed the effects of CO 2 activation on the porosity of ultrahigh pore volume carbon aerogels. Data obtained from the new 2D-NLDFT-HS model for carbons has been compared to the results of conventional methods (BJH, t-plot, DR); all the models were applied to the desorption branch of the isotherms. Physical activation of the carbon aerogel at different burn-off degrees resulted in materials showing increasing volume of micropores and alteration of mesopore structure. The later effect manifested itself by a characteristic inflection in the desorption branch of the nitrogen isotherm at high relative pressures. Such curvatures are attributed to a non uniform activation of the carbon matrix with CO 2 that in some parts carves the surface of the precursor deeper than in others, creating bimodal/multimodal pore size distributions. The different methods applied for the assessment of the textural properties of the aerogels with ultrahigh micro-/mesoporosity showed excellent agreement in terms of pore volumes, surface areas and average pore size.