“…Many alternatives to the FRT have been proposed in recent years for estimating orientation information from the same kind of HARDI data, including multi-tensor models (Alexander et al, 2001; Tuch et al, 2002; Hosey et al, 2005; Kreher et al, 2005; Peled et al, 2006; Behrens et al, 2007; Jian et al, 2007; Ramirez-Manzanares et al, 2007; Pasternak et al, 2008; Melie-García et al, 2008; Leow et al, 2009; Tabelow et al, 2012), higher-order generalizations of tensor models (Alexander et al, 2002; Frank, 2002; Özarslan and Mareci, 2003; Liu et al, 2004; Schultz and Seidel, 2008; Barmpoutis et al, 2009; Liu et al, 2010; Florack et al, 2010), directional function modeling (Kaden et al, 2007; Rathi et al, 2009, 2010), spherical polar Fourier expansion (Assemlal et al, 2009, 2011), independent component analysis (Singh and Wong, 2010), sparse spherical ridgelet modeling (Michailovich and Rathi, 2010), diffusion circular spectrum mapping (Zhan et al, 2004), deconvolution (Tournier et al, 2007; Anderson, 2005; Descoteaux et al, 2009; Patel et al, 2010; Yeh et al, 2011; Reisert and Kiselev, 2011), the diffusion orientation transform (Özarslan et al, 2006; Canales-Rodríguez et al, 2010), estimation of persistent angular structure (Jansons and Alexander, 2003), generalized q -sampling imaging (Yeh et al, 2010), and orientation estimation with solid angle considerations (Tristán-Vega et al, 2009; Aganj et al, 2010; Tristán-Vega et al, 2010). However, the FRT has a unique combination of useful characteristics: it does not require a strict parametric model of the diffusion signal, it is linear and its theoretical characteristics can be explored analytically, and it can be computed very quickly using efficient algorithms (Anderson, 2005; Hess et al, 2006; Descoteaux et al, 2007; Kaden and Kruggel, 2011).…”