2010
DOI: 10.1007/s10851-010-0217-3
|View full text |Cite
|
Sign up to set email alerts
|

A New Tensorial Framework for Single-Shell High Angular Resolution Diffusion Imaging

Abstract: Single-shell high angular resolution diffusion imaging data (HARDI) may be decomposed into a sum of eigenpolynomials of the Laplace-Beltrami operator on the unit sphere. The resulting representation combines the strengths hitherto offered by higher order tensor decomposition in a tensorial framework and spherical harmonic expansion in an analytical framework, but removes some of the conceptual weaknesses of either. In particular it admits analytically closed form expressions for Tikhonov regularization schemes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
11
0

Year Published

2011
2011
2018
2018

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 38 publications
(65 reference statements)
0
11
0
Order By: Relevance
“…Many alternatives to the FRT have been proposed in recent years for estimating orientation information from the same kind of HARDI data, including multi-tensor models (Alexander et al, 2001; Tuch et al, 2002; Hosey et al, 2005; Kreher et al, 2005; Peled et al, 2006; Behrens et al, 2007; Jian et al, 2007; Ramirez-Manzanares et al, 2007; Pasternak et al, 2008; Melie-García et al, 2008; Leow et al, 2009; Tabelow et al, 2012), higher-order generalizations of tensor models (Alexander et al, 2002; Frank, 2002; Özarslan and Mareci, 2003; Liu et al, 2004; Schultz and Seidel, 2008; Barmpoutis et al, 2009; Liu et al, 2010; Florack et al, 2010), directional function modeling (Kaden et al, 2007; Rathi et al, 2009, 2010), spherical polar Fourier expansion (Assemlal et al, 2009, 2011), independent component analysis (Singh and Wong, 2010), sparse spherical ridgelet modeling (Michailovich and Rathi, 2010), diffusion circular spectrum mapping (Zhan et al, 2004), deconvolution (Tournier et al, 2007; Anderson, 2005; Descoteaux et al, 2009; Patel et al, 2010; Yeh et al, 2011; Reisert and Kiselev, 2011), the diffusion orientation transform (Özarslan et al, 2006; Canales-Rodríguez et al, 2010), estimation of persistent angular structure (Jansons and Alexander, 2003), generalized q -sampling imaging (Yeh et al, 2010), and orientation estimation with solid angle considerations (Tristán-Vega et al, 2009; Aganj et al, 2010; Tristán-Vega et al, 2010). However, the FRT has a unique combination of useful characteristics: it does not require a strict parametric model of the diffusion signal, it is linear and its theoretical characteristics can be explored analytically, and it can be computed very quickly using efficient algorithms (Anderson, 2005; Hess et al, 2006; Descoteaux et al, 2007; Kaden and Kruggel, 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Many alternatives to the FRT have been proposed in recent years for estimating orientation information from the same kind of HARDI data, including multi-tensor models (Alexander et al, 2001; Tuch et al, 2002; Hosey et al, 2005; Kreher et al, 2005; Peled et al, 2006; Behrens et al, 2007; Jian et al, 2007; Ramirez-Manzanares et al, 2007; Pasternak et al, 2008; Melie-García et al, 2008; Leow et al, 2009; Tabelow et al, 2012), higher-order generalizations of tensor models (Alexander et al, 2002; Frank, 2002; Özarslan and Mareci, 2003; Liu et al, 2004; Schultz and Seidel, 2008; Barmpoutis et al, 2009; Liu et al, 2010; Florack et al, 2010), directional function modeling (Kaden et al, 2007; Rathi et al, 2009, 2010), spherical polar Fourier expansion (Assemlal et al, 2009, 2011), independent component analysis (Singh and Wong, 2010), sparse spherical ridgelet modeling (Michailovich and Rathi, 2010), diffusion circular spectrum mapping (Zhan et al, 2004), deconvolution (Tournier et al, 2007; Anderson, 2005; Descoteaux et al, 2009; Patel et al, 2010; Yeh et al, 2011; Reisert and Kiselev, 2011), the diffusion orientation transform (Özarslan et al, 2006; Canales-Rodríguez et al, 2010), estimation of persistent angular structure (Jansons and Alexander, 2003), generalized q -sampling imaging (Yeh et al, 2010), and orientation estimation with solid angle considerations (Tristán-Vega et al, 2009; Aganj et al, 2010; Tristán-Vega et al, 2010). However, the FRT has a unique combination of useful characteristics: it does not require a strict parametric model of the diffusion signal, it is linear and its theoretical characteristics can be explored analytically, and it can be computed very quickly using efficient algorithms (Anderson, 2005; Hess et al, 2006; Descoteaux et al, 2007; Kaden and Kruggel, 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Florack et al used the same Laplace-Beltrami regularization on the sphere, but for tensors instead of SHs [34]. This was based on an infinite inhomogeneous tensor basis representation, much like the SHs, with the diffusion function modified toD(u) = ∑ ∞ k=0 D (k) • k u.…”
Section: Fitting Models Of Apparent Diffusivitymentioning
confidence: 99%
“…This concept is frequently used in [114,157]. Results from differential geometry are then used to process this surface.…”
Section: Beltrami Frameworkmentioning
confidence: 99%