Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and electricity is required. The electricity is provided by solar photovoltaic panels and the electrical energy in excess is stored in the form of hydrogen thanks to an electrolyzer. When a lack of electricity occurs a fuel cell provides the missing electricity by using the stored hydrogen. An electrically driven heat pump is also used to produce and cover the cold needs. Finally, in order to increase the overall efficiency of this electricity/cold cogeneration system, the low-grade waste heat generated by the different components of the system, mostly the electrolyzer and the fuel cell, is recovered and upgraded by a thermochemical reactor enabling a further cold production. The thermochemical reactor assists the heat pump for the cold supply, decreasing thus the electricity consumption. Such a prototype is intended to be built in Tahiti during the RECIF project. The PSO algorithm has been implemented and results are promising because component's size is reasonable, and the driving strategy is consistent while both demands are always satisfied. In a second study, the same PSO algorithm has been used to perform an analysis and identify a general shape of load profiles for which it become interesting, from an economic point of view, to store electricity into hydrogen instead of electrochemical batteries when the cold production is only handled by a heat pump. This study has shown that