A New Trajectory Clustering Method for Mining Multiple Periodic Patterns from Complex Oceanic Trajectories
Yanling Du,
Keqi Chen,
Guojie Yi
et al.
Abstract:Oceanic trajectories frequently exhibit multiple periodic patterns across various time intervals, e.g., tidal variations, mesoscale eddies, and El Niño events correspond to diurnal, seasonal, and interannual fluctuations in environmental factors. To explore hidden spatiotemporal multiple periodic behaviors in noisy ocean data, we propose a novel trajectory clustering method, namely DTID-STFC. It first identifies dense time intervals (DTIs) in which trajectories occur frequently. Subsequently, within each DTI, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.