The Beidou Radio Determination Satellite Service (RDSS) is an advantageous service of the Beidou system. However, due to the weak landing power of Beidou RDSS signals and an operating frequency close to the 5G frequency, the system is vulnerable to interference from ground signals. In this paper, from the perspective of civil aviation safety, different evaluation indicators are used for the takeoff and cruise phases, respectively, to study the impact caused by adjacent frequency interference on airborne Beidou RDSS equipment. In the takeoff phase, accurate aircraft position information is obtained by processing real trajectory files. Deterministic analysis methods are used to determine the safety distance for the coexistence of the two systems. During the cruise phase, ground-based 5G base stations have less influence on the airborne RDSS receiver due to the high flight altitude, so the main consideration is electromagnetic compatibility between the airborne Beidou RDSS system and the 5G ATG system. By establishing a Boeing 737–800 simulation model, the antenna isolation degree is used as the evaluation index, and a reasonable antenna layout is given according to the evaluation results. In this study, the theoretical simulation and real flight data are combined to summarise the exact range of adjacent frequency influence during the takeoff phase and a reasonable antenna layout during the cruise phase.