Inspired by the macro- and microstructures of the lotus leaf, a series of biomimetic hierarchical thin-walled structures (BHTSs) was proposed and fabricated, exhibiting improved mechanical properties. The comprehensive mechanical properties of the BHTSs were evaluated using finite element (FE) models constructed in ANSYS, which were validated by the experimental results. Light-weight numbers (LWNs) were used as an index to assess these properties. The simulation results were compared with the experimental data to validate the findings. The compression results indicated that the maximum load carried by each BHTS was very similar, with the highest bearing load being 32,571 N and the lowest being 30,183 N, resulting in only a 7.9% difference between them. In terms of the LWN-C values, the BHTS-1 exhibited the highest value at 318.51 N/g, while the BHTS-6 had the lowest value at 295.16 N/g. For the torsion and bending results, these findings suggested that increasing the bifurcation structure at the end side of the thin tube branch significantly improved the torsional resistance properties of the thin tube. For the impact characteristics of the proposed BHTSs, enhancing the bifurcation structure at the end of the thin tube branch significantly increased the energy absorption capacity and improved the energy absorption (EA) and the specific energy absorption (SEA) values of the thin tube. The BHTS-6 had the best structural design in terms of both the EA and SEA among all the BHTSs, but its CLE value was slightly lower than that of the BHTS-7, indicating slightly lower structural efficiency. This study provides a new idea and method for developing new lightweight and high-strength materials as well as designing more effective energy absorption structures. At the same time, this study has important scientific value in understanding how biological structures in nature exhibit their unique mechanical properties.