2021
DOI: 10.24200/sci.2021.50287.1614
|View full text |Cite
|
Sign up to set email alerts
|

A New Validity Index for Fuzzy-Possibilistic C-Means Clustering

Abstract: In some complicated datasets, due to the presence of noisy data points and outliers, cluster validity indices can give conflicting results in determining the optimal number of clusters. This paper presents a new validity index for fuzzy-possibilistic c-means clustering called Fuzzy-Possibilistic)FP ( index, which works well in the presence of clusters that vary in shape and density. Moreover, FPCM like most of the clustering algorithms is susceptible to some initial parameters. In this regard, in addition to t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(9 citation statements)
references
References 22 publications
0
6
0
3
Order By: Relevance
“…To solve the thruster diagnosis of AUV nonlinear system with ocean currents, it proposes the PFCM algorithm. PFCM algorithm is one popular clustering method, it is highly sensitive to noise and outliers, and the size of the clusters [23,24]. The algorithm is an unsupervised technique, the data is clustered based on similarities and dissimilarities, which are measured via distances of the cluster centers to the data points.…”
Section: Thruster Fault Diagnostics For Auvmentioning
confidence: 99%
“…To solve the thruster diagnosis of AUV nonlinear system with ocean currents, it proposes the PFCM algorithm. PFCM algorithm is one popular clustering method, it is highly sensitive to noise and outliers, and the size of the clusters [23,24]. The algorithm is an unsupervised technique, the data is clustered based on similarities and dissimilarities, which are measured via distances of the cluster centers to the data points.…”
Section: Thruster Fault Diagnostics For Auvmentioning
confidence: 99%
“…Selain lebih unggul dari metode K-Means, metode analisis klaster Fuzzy C-Means memiliki kelebihan, yaitu stabil terhadap data outlier, mampu mendeteksi klaster dengan baik, dan memiliki ketepatan dalam menentukan pusat klaster (Mashfuufah and Istiawan, 2018). Namun, dalam menjalankan algoritma pada metode Fuzzy C-Means Clustering, peneliti harus menetukan jumlah klaster terlebih dahulu, apabila peneliti asal dalam menentukannya maka hasil klaster yang tidak mencapai optimal, peneliti akan salah dalam menentukan keputusan dan kesimpulan penelitian tidak tepat (Wang and Zhang, 2007;Zarandi, Sotudian and Castillo, 2021). Hal tersebut menjadi kelemahan dari metode Fuzzy C-Means (Zarandi, Sotudian and Castillo, 2021).…”
Section: Pendahuluanunclassified
“…Namun, dalam menjalankan algoritma pada metode Fuzzy C-Means Clustering, peneliti harus menetukan jumlah klaster terlebih dahulu, apabila peneliti asal dalam menentukannya maka hasil klaster yang tidak mencapai optimal, peneliti akan salah dalam menentukan keputusan dan kesimpulan penelitian tidak tepat (Wang and Zhang, 2007;Zarandi, Sotudian and Castillo, 2021). Hal tersebut menjadi kelemahan dari metode Fuzzy C-Means (Zarandi, Sotudian and Castillo, 2021).…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Conventional Machine Learning (ML) algorithms are generally designed to minimize regression or classification errors [12, 13, 16, 32, 42]. Many real-world applications, on the other hand, deemphasize prediction accuracy and prioritize the correct ordering among all the instances [33, 34].…”
Section: Introductionmentioning
confidence: 99%