The transform domain normalized least mean squares (TDNLMS) algorithm is an efficient adaptive algorithm, which offers fast convergence speed with a reasonably low arithmetic complexity. However, its convergence speed is usually limited by the fixed step-size so as to achieve a low desired misadjustment. In this paper a new switch-mode noise-constrained TDNLMS (SNC-TDNLMS) algorithm is proposed. It employs a maximum step-size mode in initial convergence and a noise-constrained mode afterwards to improve the convergence speed and steadystate performance. The mean and mean square convergence behaviors of the proposed algorithm are studied to characterize its convergence condition and steady-state excess mean square error (EMSE). Based on the theoretical results, an automatic threshold selection scheme for mode switching is developed. Computer simulations are conducted to show the effectiveness of the proposed algorithm and verify the theoretical results.