2011
DOI: 10.14569/specialissue.2011.010312
|View full text |Cite
|
Sign up to set email alerts
|

A new vehicle detection method

Abstract: Abstract-This paper presents a new vehicle detection method from images acquired by cameras embedded in a moving vehicle. Given the sequence of images, the proposed algorithms should detect out all cars in realtime. Related to the driving direction, the cars can be classified into two types. Cars drive in the same direction as the intelligent vehicle (IV) and cars drive in the opposite direction. Due to the distinct features of these two types, we suggest to achieve this method in two main steps. The first one… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2012
2012
2018
2018

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…Pada sejumlah studi, waktu yang tersedia sangat terbatas sehingga menimbulkan dampak kepada besarnya biaya yang diperlukan dan jumlah surveyor yang terlibat (Putranto, 2016 Metode ini melakukan deteksi dengan mengacu pada interpretasi interest point (Khalid, Mazoul, & Ansari, 2011 Sedangkan untuk memaksimalkan hasil deteksi mobil maka ditambahkan verifikator berupa algoritma pengklasifikasi SVM dengan deskriptor HOG agar sistem mampu mendeteksi mobil dengan tepat (Indrabulan, 2018).…”
Section: Pendahuluanunclassified
“…Pada sejumlah studi, waktu yang tersedia sangat terbatas sehingga menimbulkan dampak kepada besarnya biaya yang diperlukan dan jumlah surveyor yang terlibat (Putranto, 2016 Metode ini melakukan deteksi dengan mengacu pada interpretasi interest point (Khalid, Mazoul, & Ansari, 2011 Sedangkan untuk memaksimalkan hasil deteksi mobil maka ditambahkan verifikator berupa algoritma pengklasifikasi SVM dengan deskriptor HOG agar sistem mampu mendeteksi mobil dengan tepat (Indrabulan, 2018).…”
Section: Pendahuluanunclassified
“…This strategy is very useful to reduce the computational time and to optimize the classification process. Zebbara et al [24][25] used the same approach for on road vehicle detection.…”
Section: Introductionmentioning
confidence: 99%