River basins are complex spatiotemporal systems, and too often, restoration efforts are ineffective due to a lack of understanding of the purpose of the system, defined by the system structure and function. The river basin system structure includes stocks (e.g., water volume or quality), inflows (e.g., precipitation or fertilization), outflows (e.g., evaporation or runoff), and positive and negative feedback loops with delays in responsiveness, that all function to change or stabilize the state of the system (e.g., the stock of interest, such as water level or quality). External drivers on this structure, together with goals and rules, contribute to how a river basin functions. This article reviews several new research projects to identify and rank the twelve most effective leverage points to address discrepancies between the desired and actual state of the river basin system. This article demonstrates river basin restoration is most likely to succeed when we change paradigms rather than trying to change the system elements, as the paradigm will establish the system goals, structure, rules, delays, and parameters.