“…* Input 22: We define a map Q : R → P , that change of variables (A.16) and change the basis in so(6) using the notation (A.9). The definition of Q is the following: Qvari = {x i => t i, F (1, 2) => −z * h 1, F (3, 4) => −z * h 2, F (5, 6) => −z * h 3, F (2 * i − 1, 2 * j − 1) => (e (i, j) + em (i, j) + me (i, j) + mem (i, j))/4), F (2 * i, 2 * j) => (e (i, j) − em (i, j) + me (i, j) − mem (i, j))/4), F (2 * i − 1, 2 * j) => −z * (e (i, j) − em (i, j) − me (i, j) + mem (i, j))/4), F (2 * i, 2 * j − 1) => −z * (−e (i, j) − em (i, j) + me (i, j) + mem (i, j))/4), E => E0, v i => u i, v (i, j) => u (i, j), v (i, j, k) => u (i, j, k), v (i, j, k, l) => u (i, j, k, l), v (2,3,4,5,6) => z * (omega 1 − domega 1), v (1,2,4,5,6) => z * (omega 2 − domega 2), v (1,2,3,4,6) => z * (omega 3 − domega 3), v (1,3,4,5,6) => (omega 1 + domega 1), v (1,2,3,5,6) => (omega 2 + domega 2), v (1,2,3,4,5) => (omega 3 + domega 3), v (1,2,3,4,5,6) => u (1,2,3,4,5,…”