2011
DOI: 10.1039/c0ee00736f
|View full text |Cite
|
Sign up to set email alerts
|

A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: a combined electrocatalytical and DFT mechanistic study

Abstract: International audienceThe dinuclear nickel–manganese complex [Ni(xbsms)Mn(CO)3(H2O)]+ (H2xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) is reported as a bio-inspired mimic of the active site of NiFe hydrogenases catalyzing hydrogen evolution from trifluoroacetic acid in DMF with an overpotential requirement of 860 mV. This is higher than that displayed by Ni–Ru systems [Canaguier et al., Chem.–Eur. J., 2009, 15, 9350–9364] but similar to that found for related noble metal free Ni–Fe mimics [Canag… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

9
108
0
3

Year Published

2011
2011
2018
2018

Publication Types

Select...
5
2

Relationship

4
3

Authors

Journals

citations
Cited by 90 publications
(120 citation statements)
references
References 54 publications
9
108
0
3
Order By: Relevance
“…[57][58][59][60][61] Some coordinatively saturated compounds, such as octahedral hexaamino complexes 24-27 ( Figure 6), [62] and including sepulchrate derivatives [62,63] and clathrochelate trisdioxime compounds 28-29 ( Figure 7), [64] have also been described. A last class is provided by organometallic compounds containing cyclopentadienyl (30)(31)(32)(33) [63, 65,66] or diphosphine (34) [67,68] ligands ( Figure 8). We will not survey all of the examples, but will rather select some of the above-mentioned systems to highlight the specific features that are key to provide catalytic H 2 -evolving activity.…”
Section: Cobalt Catalysts For H 2 Evolutionmentioning
confidence: 99%
See 1 more Smart Citation
“…[57][58][59][60][61] Some coordinatively saturated compounds, such as octahedral hexaamino complexes 24-27 ( Figure 6), [62] and including sepulchrate derivatives [62,63] and clathrochelate trisdioxime compounds 28-29 ( Figure 7), [64] have also been described. A last class is provided by organometallic compounds containing cyclopentadienyl (30)(31)(32)(33) [63, 65,66] or diphosphine (34) [67,68] ligands ( Figure 8). We will not survey all of the examples, but will rather select some of the above-mentioned systems to highlight the specific features that are key to provide catalytic H 2 -evolving activity.…”
Section: Cobalt Catalysts For H 2 Evolutionmentioning
confidence: 99%
“…[4] While the first two topics have been the core of artificial photosynthesis for the last two decades, and also the subject of comprehensive reviews, [13][14][15][16][17][18][19][20][21][22][23] significant achievements have been made only in the recent years as far as the design of efficient molecular catalysts for both hydrogen and oxygen evolution is concerned. These comprise FeFe, [24] NiRu, [25][26][27][28][29][30] NiMn, [31] and NiFe [25,[32][33][34] models of the active sites of hydrogenases as well as manganese [35] and ruthenium [36][37][38][39][40] catalysts as functional mimics of the PSII OEC. These systems have been reviewed recently.…”
Section: Introductionmentioning
confidence: 99%
“…[57][58][59][60][61] Darüber hinaus wurden einige koordinativ gesättigte Verbindungen wie die oktaedrisch koordinierten Hexaminkomplexe 24-27 (Abbildung 6), [62] darunter auch Sepulchrat-Derivate, [62,63] und die Trisdioxim-Clathrochelate 28 und 29 (Abbildung 7) [64] beschrieben. Als letzte Klasse wären noch Organometallverbindungen mit Cyclopentadienyl- (30)(31)(32)(33) [63,65,66] oder Diphosphanliganden (34) [67,68] [72] Somit erhält man ein Maß für den Energieaufwand, der betrieben werden muss, damit die Reaktion mit einer signifikanten Geschwindigkeit ablaufen kann. [72][73][74] Der zweite charakteristische Parameter eines Katalysators ist seine Umsatzfrequenz ("turnover frequency", TOF).…”
Section: Cobaltkatalysatoren Für Die Wasserstofferzeugungunclassified
“…[4] Während die ersten beiden Schritte in den vergangenen zwanzig Jahren intensiv erforscht und auch in Übersichten umfassend erörtert worden sind, [13][14][15][16][17][18][19][20][21][22][23] wurden bei der Entwicklung molekularer Katalysatoren für sowohl Wasserstoffals auch Sauerstofferzeugung erst vor kurzem entscheidende Fortschritte erzielt. Zu erwähnen sind hier FeFe-, [24] NiRu-, [25][26][27][28][29][30] NiMn- [31] und NiFe-Modelle [25,[32][33][34] für die aktiven Zentren von Hydrogenasen sowie Mangan- [35] und Rutheniumkatalysatoren, [36][37][38][39][40] die ähnliche Funktionen erfüllen wie das OEC von PSII. Aktuelle Übersichten zu diesen Systemen sind verfügbar.…”
Section: Introductionunclassified
“…A competitive alternative to platinum could be found in living micro-organisms that metabolize hydrogen using hydrogenases [1,2]. Catalysis in hydrogenases requires only base-metal centers (nickel and iron), and the structures of their active sites have inspired the design of new synthetic catalysts based on these metals [3][4][5][6][7][8], cobalt [8,9], or other Earth-abundant elements such as molybdenum [10] and manganese [11]. Probably one of the most successful examples of such a bio-inspired approach is the series of nickel bisdiphosphine complexes designed by D. L. DuBois (Scheme 1) [12,13].…”
Section: Introductionmentioning
confidence: 99%