We construct new indecomposable elements in the higher Chow group CH 2 (A, 1) of a principally polarized Abelian surface over a p-adic local field, which generalize an element constructed by Collino [Griffiths' infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J. Algebraic Geom. 6 (1997), 393-415]. These elements are constructed using a generalization, due to Birkenhake and Wilhelm [Humbert surfaces and the Kummer plane, Trans. Amer. Math. Soc. 355 (2003), 1819-1841 (electronic)], of a classical construction of Humbert. They can be used to prove a non-Archimedean analogue of the Hodge-D-conjecture -namely, the surjectivity of the boundary map in the localization sequence -in the case where the Abelian surface has good and ordinary reduction.