Abstract:A data-driven model augmentation framework, referred to as Weakly-coupled Integrated Inference and Machine Learning (IIML), is presented to improve the predictive accuracy of physical models. In contrast to parameter calibration, this work seeks corrections to the structure of the model by a) inferring augmentation fields that are consistent with the underlying model, and b) transforming these fields into corrective model forms. The proposed approach couples the inference and learning steps in a weak sense via… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.