2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) 2017
DOI: 10.1109/ei2.2017.8245612
|View full text |Cite
|
Sign up to set email alerts
|

A non-intrusive load identification method based on convolution neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(11 citation statements)
references
References 3 publications
0
6
0
2
Order By: Relevance
“…Although the proposed algorithm is applicable in the general smart grid context, this paper focuses on the NILM problem for demonstration purposes. In the literature, ML has been leveraged to perform NILM, and Wang et al [1], Lan et al [39], Mauch and Yang [40] are examples of some recent work in this area. This paper focuses on [1] for the Oracle.…”
Section: A the Threat Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…Although the proposed algorithm is applicable in the general smart grid context, this paper focuses on the NILM problem for demonstration purposes. In the literature, ML has been leveraged to perform NILM, and Wang et al [1], Lan et al [39], Mauch and Yang [40] are examples of some recent work in this area. This paper focuses on [1] for the Oracle.…”
Section: A the Threat Modelmentioning
confidence: 99%
“…1) Substitute Model Selection: First, the architecture of the substitute model constructed by the adversary is presented. As highlighted in recent literature, various internal architectures that include convolutional neural networks [39] [41] [42], recurrent neural networks [40] [43] [44], and auto-encoders [45] have been leveraged to construct ML models for NILM applications. One important objective is that the substitute model must be able to imitate any Oracle operating on smart meter data.…”
Section: B Stage 1: Substitute Model Constructionmentioning
confidence: 99%
“…However, many studies propose applying CNNs to achieve NILM. Lan proposes a method to convert electric current data into a grayscale image with a resolution of 64×64, and then designs a CNN model to identify the load [24]. Yang proposes an imaging rule to convert current waveforms to greyscale image and constructs a CNN architecture premised upon VGG-16 to tackle the issue of NILM [25].…”
Section: Related Workmentioning
confidence: 99%
“…Nosúltimos anos, as CNNs conseguiram solucionar diversos problemas de visão computacional, como classificação de imagens, detecção de objetos e alteração de imagens. Tudo isso foi possível devidoà sua capacidade de selecionar características em diferentes níveis (Lan et al, 2017). Apesar da rede 5 ter apresentado a melhor acurácia, ela também apresentou um grande número de parâmetros, um total de 2.928.800.…”
Section: Caracterização E Classificação Autônomaunclassified
“…Já no segundo caso, o monitoramentoé feito através de umúnico dispositivo conectadoà rede, o qual envia dados para uma central queé utilizada para reconhecer as cargas ativas (Rayudu et al, 2011). O método não intrusivo apresenta vantagens frente ao intrusivo, tais como: custo baixo, facilidade na instalação e na manutenção, mesmo com a entrada de novos equipamentos na rede (Lan et al, 2017). Tais vantagens garantem a viabilidade de implantação do sistema de identificação, tornando o método NILM o mais investigado.…”
Section: Introductionunclassified