2021
DOI: 10.3390/math9172022
|View full text |Cite
|
Sign up to set email alerts
|

A Nonhomogeneous Boundary Value Problem for Steady State Navier-Stokes Equations in a Multiply-Connected Cusp Domain

Abstract: The boundary value problem for the steady Navier–Stokes system is considered in a 2D multiply-connected bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with nonzero flow rates over connected components of the boundary is studied. It is also supposed that there is a source/sink in O. In this case the solution necessarily has an infinite Dirichlet integral. The existence of a solution to this problem is proved assuming that the flow rates are “suffici… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?